

Monitoring Influenza/COVID-19 Vaccine Effectiveness in Europe – from I-MOVE to VEBIS: Measuring vaccine effectiveness since 2008-09

Esther Kissling, Epiconcept e.kissling@epiconcept.fr 19 April 2024

We have received funding from ECDC, WHO/Europe, European Commission for these studies. We declare no conflict of interest. Travel and accommodation to this meeting was self-funded.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003673

Motivation

Why do we need vaccine effectiveness studies?

- Vaccine efficacy (randomised control trial) and vaccine effectiveness (observational data) estimates may differ due to
 - O populations (e.g. healthy vs whole population)
 - O field conditions (e.g. cold chain, timing of doses)
- Vaccination-induced protection may also vary by
 - O different risk groups
 - O severity of disease
 - O emergence of new strains
 - vaccine-related parameters
- Need for rapid information to inform policy decisions
 - O definition of target groups for vaccination
 - O timing of vaccination campaign and booster doses/re-vaccination
 - need for a new vaccination campaign with the emergence of new strains
 - o re-formulation of subsequent vaccines

Background I-MOVE and related studies

Background I-MOVE and related multicentre VE studies

- Vaccine evaluation research in the EU 2007–2022 (now under ECDC VEBIS umbrella)
- Over 20 study site and partner national/regional public health institutes in Europe
- >100 publications in peer-reviewed journals (national and pooled studies)
- International collaboration (US, Canada, Hong Kong, Australia)
- Capacity development (Masters, PhD, EPIET/FETP)
- Public funding only
- Inspiration for other international muticentre VE networks Euro-SAVE, AFRO-MoVE
- Well-established, robust network: estimating influenza VE during challenges of COVID-19 pandemic (2021–22)

I-MOVE, I-MOVE+, I-MOVE-COVID-19 and VEBIS studies

2008-2022	2									YEA	R				
Project	Funding	Disease	Setting	Study design	Population	n 08 (09 10 11	12 13	8 14 1	5 16	17 1	8 19	20 21	22 23	3 24
I-MOVE	ECDC	Flu	Primary care	TND	≥65y										
		Flu	Primary care	TND	All ages										
I-MOVE+	Horizon	Flu	Hospital	TND	≥65y										
	2020	Pneumo	Hospital	Broome;Coho	rt≥65y										
I-MOVE-	Horizon	COVID-19	Primary care	TND	Allages							- 1			
COVID-19	2020	COVID-19	Hospital	TND	Allages										
Now: VEB	S 2021 o	nwards													
VEBIS Lot 1	ECDC	COVID-19	Hospital	TND	All ages										
		Influenza	Hospital	TND	Allages										
VEBIS Lot 2	ECDC	COVID-19	Hospital	Cohort	HCW										
		Influenza	Hospital	Cohort	HCW										
VEBIS Lot 4	ECDC	COVID-19	EHR	Cohort	All ages										
VEBIS Lot 5	ECDC	COVID-19	Primary care	TND	Allages										
		Influenza	Primary care	TND	Allages										

TND: test negative design

Overview of VEBIS studies

VEBIS Programme

- VEBIS: Vaccine Effectiveness, Burden and Impact Studies
 - funded by ECDC since October 2021
 - Hospital and primary care TND studies were based on I-MOVE/I-MOVE+/I-MOVE-COVID-19 networks
- Primary objective: to estimate COVID-19 and influenza VE in the EU/EEA
 - $_{\circ}$ overall and by vaccine product
- Studies established in four different EU/EEA settings/populations
 - test-negative design (among community-dwelling population)
 - primary care attendees with acute respiratory infection (ARI)
 - patients hospitalised with severe acute respiratory infection (SARI)
 - many studies embedded in existing ARI/SARI surveillance systems
 - cohort studies
 - electronic health register (EHR) based cohorts of community-dwelling individuals eligible for COVID-19 vaccination. Outcome: COVID-19-related hospitalisations or deaths
 - healthcare worker (HCW) cohorts. Outcome: SARS-CoV-2 or influenza infection

VEBIS primary care, hospital, EHR and HCW studies include 20 study sites across 19 countries

VEBIS primary care and hospitalised patients, electronic health register (EHR) and healthcare worker (HCW) studies: methods

• All studies employed

- Generic common protocol pooling multi-country results
- Case definition: PCR-confirmed SARS-CoV-2/influenza infection
- Included only those that were eligible for vaccination and provided consent
- Estimates adjusted for key confounders (often age, sex, site, time and underlying condition)

• Differences between studies:

Characteristic	Primary care Hospitalis		Population-based EHRs	HCWs			
Study type	Test-negative, case with some studies nest	-control design ted in surveillance	Retrospective cohort	Prospective cohort			
Population	Community	eligible for booster	vaccination	Hospital-working HCWs			
Case definition	Symptomatic infections (ARI/ILI)	Hospitalised (SARI)	Hospitalisation (SARI) or death	All symptomatic or asymptomatic infections			
Age-groups	≥5 years; vaccine	target group	≥ 65 years	Adults (working age)			
Analysis	Logistic regr VE=(1-aOF	ression: R)*100	Cox regression: VE=(1-aHR)*100 (HR: hazard ratio)				

Key research questions 2008–2024

Informing those who need to know in a timely way

- Initiation of the **GIVE report** (Global influenza vaccine effectiveness report)
 - Report of influenza TND VE results from studies across the world
 - o Informs WHO influenza vaccine strain selection committee meeting
 - Produced twice a year: February and September \rightarrow Northern and Southern Hemisphere vaccines
 - First report: September 2013
 - Over the years up to 17 studies reporting from all continents
 - Also includes clade-specific VE
- Early influenza VE 2023 (primary care) HTML report in December to stakeholders (MoH, institute of public health, network of GPs)
- Pandemic VE: 2009 influenza VE; first COVID-19 vaccines

OPEN O ACCESS Freely available online

Estimates of Pandemic Influenza Vaccine Effectiveness in Europe, 2009–2010: Results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) Multicentre Case-Control Study

Marta Valenciano¹¹, Esther Kissling¹, Jean-Marie Cohen², Beatrix Oroszi³, Anne-Sophie Barret^{4,5}, Caterina Rizzo⁶, Baltazar Nunes⁷, Daniela Pitigoi^{8,9}, Amparro Larrauri Cámara¹⁰, Anne Mosnier², Judith K. Horvath³, Joan O'Donnell⁴, Antonino Bella⁶, Raquel Guiomar⁷, Emilia Lupulescu⁸, Camelia

RAPID COMMUNICATIONS

Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021

Esther Klissling*, Mariette Hooiveld*, Virginia Sandonis Martíno, Iván Martínez-Baz**, Naoma William*, Ana-Maria Vilcu?, Clarar Mazagatos**, Lisa Domegan*, Simon de Luigrama**, Adam Meiger*, Ausenda Machado*, Nia Bryting*, Itziar Casado*, Josephine-L K. Murray*, Sylvie Behilliu**, Amparo Larrauri**, Joan O'Donnell*, Ruby Tsang***, Marit de Lange*, Ana Paula Rodrigues*, Naumilian Riesz», Iessú Sastilla*, Mark Hamiltor A, Alessandra Talchi?, Francisco Pozo*, Lindo Dunford*, Jade Cogdale*, Tessa Jansen*, Raquel Guiomar*), Theresa Enkirch*, Cristina Burgui*, Debie Sigerson*, Jinde Dunford*, Jade Maria Martínez Ochoa*, Jef Connell*, Joanna Ellis*, Rianae van Gageldon-Lefeber*, Jina Kisaya*, Angela Mc Rose*, Marta

VE by time since vaccination

- VE by time since vaccination helps us understand potential decline in VE
 - Due to waning of immunity, virological changes
- Informs public health policy: Timing of vaccination campaigns, possible second vaccinations
- Influenza VE by time since vaccination from 2011–2012

RESEARCH ARTICLE

I-MOVE multicentre case–control study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination?

E Kissling ', B Nunes ², C Robertson 1^5, M Valenciano ', A Reuss ', A Larrauri n², M Cohen °, B Oroszi nº, C Rizzo n, A Machado ², D Pitigoi 1*3), L Domegan 14, I Paradowska-Stankiewicz 14, U Buchholz ', A Gherasim ', I Daviaud °, JK Horváth 10, A Bella 14, E Lupulescu n², J O Donneil n², M Korczyńska 15, A Moren 1, I-MOVE case-control study team 16

COVID-19 VE by time since vaccination as part of each publication

RESEARCH

Effectiveness of complete primary vaccination against COVID-19 at primary care and community level during predominant Delta circulation in Europe: multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021

Esther Kissling¹, Mariëtte Hoolveld², Iván Martínez-Baz¹, Clara Mazagatos¹, Nooma William², Ana-Maria Vittur¹, Marjolein N Kooijman^a , Maja Ilić^a, Lisa Domegan^a, Ausenda Machado¹¹, Simon de Lusignan^{10,40}, Mihaela Laza¹⁴, Adam Meijer⁴, Mia Brytting15, Itziar Casado¹¹⁴, , Amparo Larrauri⁴¹, Josephine-L K Murray⁴, Sylvie Behillit^{14,47}, Strechje de Gier⁴, Ivan Mlinarićg, Joan O'Donnell¹¹¹, Ana Paula Rodrigues¹¹, Ruby Tsang^{111,40}, Sanja Kurefić Filipović²¹, Linda Dunford¹¹⁴, Raquef Guioma¹¹, Jade Cogdale¹¹, Carmen Cherciu⁴¹, Hamilton⁴, Alessandra Falch¹¹ , Mirjan J Knol⁴, Sanja Kurefić Filipović²¹, Linda Dunford¹¹⁴, Raquef Guioma¹¹, Jade Cogdale¹¹, Carmen Cherciu⁴¹, Tensis Enkirch⁵¹, Luca Basile¹¹⁴, Jeff Connell¹¹⁴, Verónica Gomez¹¹, Virginia Sandonis Martín⁴¹, Sabrina Bacci¹¹⁹, Angela MC Rose¹, Lucia Pastore Celentano¹¹⁵, Marta Valenciano¹¹, I-MOVE¹¹, COVID-19 and ECDC primary care study teams¹¹⁴

RAPID COMMUNICATION

Effectiveness of the adapted bivalent mRNA COVID-19 vaccines against hospitalisation in individuals aged \geq 60 years during the Omicron XBB lineage-predominant period: VEBIS SARI VE network, Europe, February to August, 2023

Liliana Antunes¹, Clara Mazagatos²³, Iván Martínez-Baz^{4,5}, Verónica Gomez⁶, Maria-Louise Borg⁹, Goranka Petrovič⁸, Róisín Duffy⁹, François E Dufrasne¹⁹, Ralf Dürrwald¹⁴, Mihaela Lazar², Ligita Jancoriene¹⁹, Beatrix Toroszi¹⁴, Petr Husa⁴⁵, Jennifer Howard¹, Aryse Melo¹⁶, "Francisco Pozo¹⁷, Gioria Pérez-Gimeno²³, Jesús Castillaris⁴, Ausenda Machado⁶, Austra DZiugytè² Svjetlana Karabuva¹⁸, Margaret Fitzgerald⁹, Sébastien Fierens¹⁹, Kristin Tolksdorf²⁹, Silvia-Odette Popovici²¹, Auksé Mickiené²³, Gergő Túrl⁴⁶, Lenka Součková¹⁵, Nathalie Nicolay²³, Angela MC Rose¹, on behalf of the European Hospital Vaccine Effectiveness Group²⁴

Immunological imprinting (influenza)

- Immunological imprinting by first childhood influenza infection \rightarrow future birth cohort differences in vaccine effectiveness
- First addressed in 2015–16, again in 2018–19, now in 2023–24

RESEARCH

Low 2018/19 vaccine effectiveness against influenza A(H3N2) among 15–64-year-olds in Europe: exploration by birth cohort

Esther Kissling¹, Francisco Pozo², Silke Buda³, Ana-Maria Vilcu⁴, Alin Gherasim^{5,6}, Mia Brytting⁷, Lisa Domegan^{8,9}, Verónica Gómez¹⁰, Adam Meijer¹¹, Mihaela Lazar¹², Vesna Višekruna Vučina¹³, Ralf Dürrwald⁴, Sylvie van der Werf^{53,6}, Amparo Larrauri^{5,6}, Theresa Enkirch⁷, Joan O'Donnell⁶, Raquel Guiomar¹⁷, Mariëtte Hooiveld¹⁸, Goranka Petrović¹³, Elena Stoian¹², Pasi Penttinen¹⁹, Marta Valenciano¹, I-MOVE primary care study team²⁰ Birth cohort-specific vaccine effectiveness against influenza A(H3N2), I-MOVE primary care multicentre study, Europe, influenza season 2018/19 (n - 5,802)

VE: vaccine effectiveness.

Numbers on the x axis represent: cases; vaccinated cases / controls; vaccinated controls.

SARS-CoV-2 immunological imprinting also relevant

Clade and variant-specific VE

- (Sub)clade-specific influenza VE from 2015
- Important granularity to better understand vaccine performance in the context of several circulating clades
- Linking epi and genetic sequencing data at individual level
 - $\circ~\mbox{Results}$ weighted by sampling fraction
 - o Further granularity: VE by mutation at key positions within the hemagglutinin
 - $\circ~$ Helps understand which amino acid substitutions are key for immune escape

- Variant-specific COVID-19 VE from 2021
 - Using variant-predominant periods
 - Linking epi and study genetic sequencing data (primary care)

Effectiveness of influenza vaccine against influenza A in Europe in seasons of different A(H1N1)pdm09 and the same A(H3N2) vaccine components (2016–17 and 2017–18)

Esther Kissling ^{a,*}, Francisco Pozo^b, Silke Buda^c, Ana-Maria Vilcu^d, Caterina Rizzo^{e,f}, Alin Gherasim ^{g,h}, Judit Krisztina Horváth¹, Mia Brytting¹, Lisa Domegan^k, Adam Meijer¹, Iwona Paradowska-Stankiewicz^m, Ausenda Machadoⁿ, Vesna Višekruna Vučina^o, Mihaela Lazar^p, Kari Johansen^q, Ralf Dürrwald^r, Sylvie van der Werf^{s,t}, Antonino Bella^e, Amparo Larrauri^{g,h}, Annamária Ferenczi¹, Katherina Zakikhany¹, Joan O'Donnell^k, Frederika Dijkstra¹, Joanna Bogusz^m, Raquel Guiomar^u, Sanja Kurečić Filipović^o, Daniela Pitigoi^v, Pasi Penttinen^q, Marta Valenciano^a, I-MOVE/I-MOVE+ study team¹

Other topics of interest

- VE against outcomes of different severity
 - o from VE against asymptomatic outcome to against death
- Vaccine type/platform-specific VE
- Effect of repeated vaccination
- Vaccination strategy that provides optimal protection
 - o incl. co-administration of vaccines
- Hybrid immunity VE effect modification by previous SARS-CoV-2 infection
- Vaccine programme impact
 - Severe outcomes averted
 - \circ Indirect protection
- Well-designed studies, replicated across study groups, international discussions/sharing → Will help understand key topics/study questions

Challenges and next steps

Challenges

- Sustainability of multicentre study funding and teams (human resources), and access to electronic health record linkage during inter-pandemic phases
- Robustness of multicentre studies during emergency and crisis phases
- Anticipate the most relevant research questions during interpandemic and pandemic phases
- Geographical diversity of vaccines used, vaccine coverage and epidemiology of respiratory infections
- Inclusion of serological results in analyses
- Validity of outcome and vaccination variables/sources
- Heterogeneity between study sites' master protocol implementation
- Internal validity issues: possible confounding, selection and classification biases

Challenges

- Sustainability of multicentre study funding and teams (human resources), and access to electronic health records linkage during inter-pandemic phases
- Robustness of multicentre studies during emergency and crisis phases
- Anticipate of the most relevant research questions during interpandemic and pandemic phases
- Geographical diversity of vaccines used, vaccine coverage and epidemiology of respiratory infections
- Inclusion of serological results in analyses
- Validity of outcome and vaccination variables/sources
- Heterogeneity between study sites' master protocol implementation
- Internal validity issues: possible confounding, selection and classification biases

Challenges

- Sustainability of multicentre study funding and teams (human resources), and access to electronic health records linkage during inter-pandemic phases
- Robustness of multicentre studies during emergency and crisis phases
- Anticipate of the most relevant research questions during interpandemic and pandemic phases
- Geographical diversity of vaccines used, vaccine coverage and epidemiology of respiratory infections
- Inclusion of serological results in analyses
- Validity of outcome and vaccination variables/sources
- Heterogeneity between study sites' master protocol implementation
- Internal validity issues: possible co Additional studies around control selection, self-testing in the general population

Summary

- VEBIS platform provides important resource to monitor vaccine effectiveness
 - Pooling studies increases sample sizes and precision to answer key questions
 - o Informs key public health decisions and can address different questions
 - Catalyses technical capacity in EU/EEA and beyond
 - Depends on efforts of many
- Lessons learnt for other vaccine preventable diseases
 - Nest VE studies under systematic data collection for surveillance (sentinel, nonsentinel, EHR)
 - Using robust generic protocols
 - Collection of vaccine uptake data
 - Collection of other variables needed for adjustment, stratification, research questions
- Continuing vaccine effectiveness studies essential to inform:
 - Public health policy decisions
 - Research questions for vaccines and vaccination programmes

Acknowledgements

• VEBIS consortium partner leads

- o **Instituto de Salud Carlos III (Spain):** Amparo Larrauri, Clara Mazagatos, Gloria Perez Gimeno, Paco Pozo
- o Instituto de Salud Publica y Laboral Navarre (Spain): Jesus Castilla, Ivan Martínez-Baz, Itziar Casado Buesa
- Instituto de Salud Instituto Nacional de Saúde Doutor Ricardo Jorge (Portugal): Ausenda Machado, Vania Gaio, Ana Paula Rodrigues, Raquel Guiomar, Aryse Melo
- Health Protection Surveillance Centre (Ireland): Joan O'Donnell, Lisa Domegan

• VEBIS scientific project leads

- **Primary care:** Esther Kissling, Charlotte Laniece Delaunay, Marine Maurel (Epiconcept)
- **Hospital:** Angie Rose, Liliana Antunes, Jenny Howard (Epiconcept)
- Electronic Health Registers: Baltazar Nunes, James Humphreys, Esther Kissling, Anthony Nardone (Epiconcept);
 Susana Monge (Instituto de Salud Carlos III)
- Healthcare workers: Camelia Savulescu, Albert Prats Uribe, Madelyn Rojas, Ranya Mulchandani, Anthony Nardone (Epiconcept)
- ECDC: Sabrina Bacci, Kim Brolin, Nathalie Nicolay, Marlena Kaczmarek, Kate Olsson
- Epiconcept: Alexis Sentis, Alain Moren, Valerie Nancey
- All partner institutes/hospitals

Thank you for your attention

Questions?