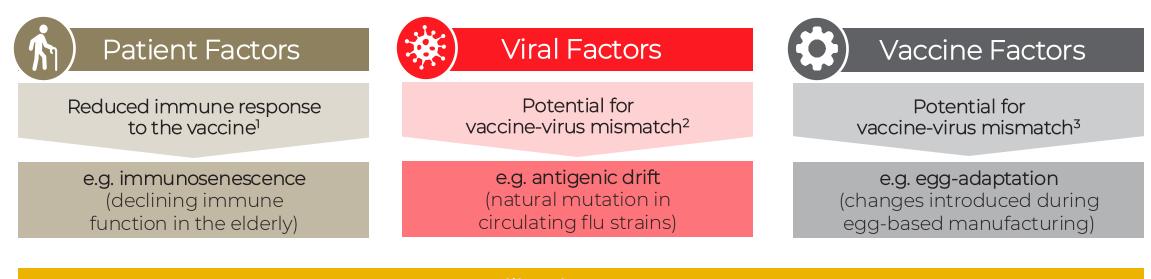
Name: Colin Russell

Country: Netherlands Affiliation: Amsterdam UMC Function: Professor Main expertise: Virus Evolution

Influenza: high-dose and adjuvanted vaccines

Disclosures

I have received advisory, consulting, and/or speaking fees from BioNTech, CSL Seqirus, GSK, Moderna, Pfizer, Roche, & Sanofi

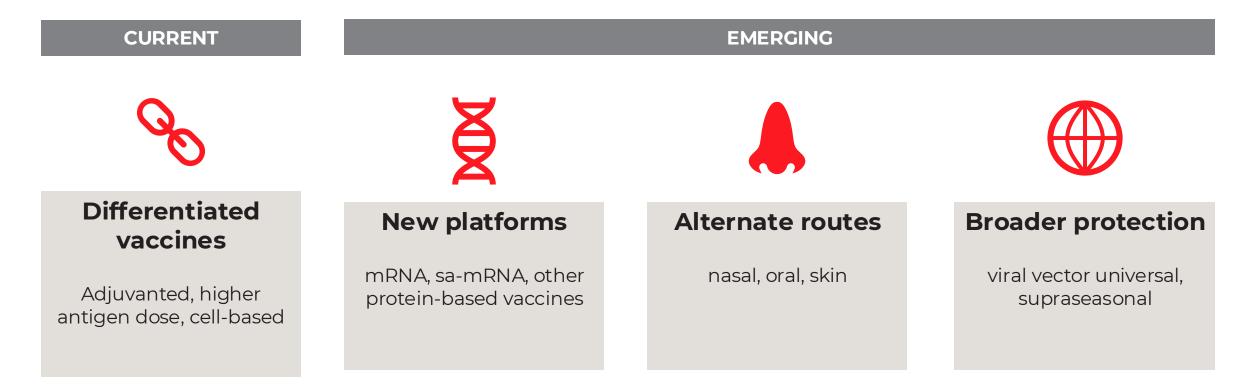

Inzet van vernieuwde typen griepvaccins in het Nationaal Programma Grieppreventie

Aan: de staatssecretaris Jeugd, Preventie en Sport (VWS) Nr. 2024/18, Den Haag, 17 december 2024

Tabel 1 Geadviseerde vaccins per doelgroep

Doelgroep	Vaccin
Risicogroepen van 6 maanden	Standaardvaccin
tot 18 jaar	
Zwangere vrouwen	Standaardvaccin
Risicogroepen van 18-50 jaar	Standaardvaccin of recombinant vaccin
Risicogroepen van 50-60 jaar	Vaccin met adjuvans
Mensen van ≥60 jaar	Vaccin met adjuvans of vaccin met verhoogde dosis antigeen

Many factors impact standard vaccine effectiveness



Utilisation Factors

e.g. lack of patient demand and/or provider recommendation leading to under-vaccination^{4,5}

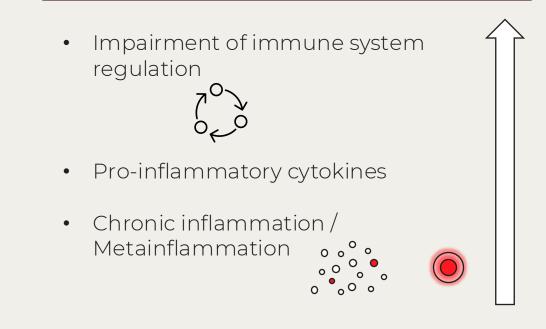
1. McElhaney JE. Aging Health. 2008;4(6):603-13. 2. Ansaldi et al. Vaccine. 2010;s8:4123-29 3. Skowronski DM et al. PLoS One. 2014;9(3):e92153. 4. Menzies RI et al. Med J Aust. 2017;206(6):238-239. 5. Rao S et al. Hosp Pediatr. 2016;6(9):513-519.

There are a variety of avenues for improving influenza vaccine effectiveness

Age-related changes in immune response can impact VE

Innate immune cell⁺ function

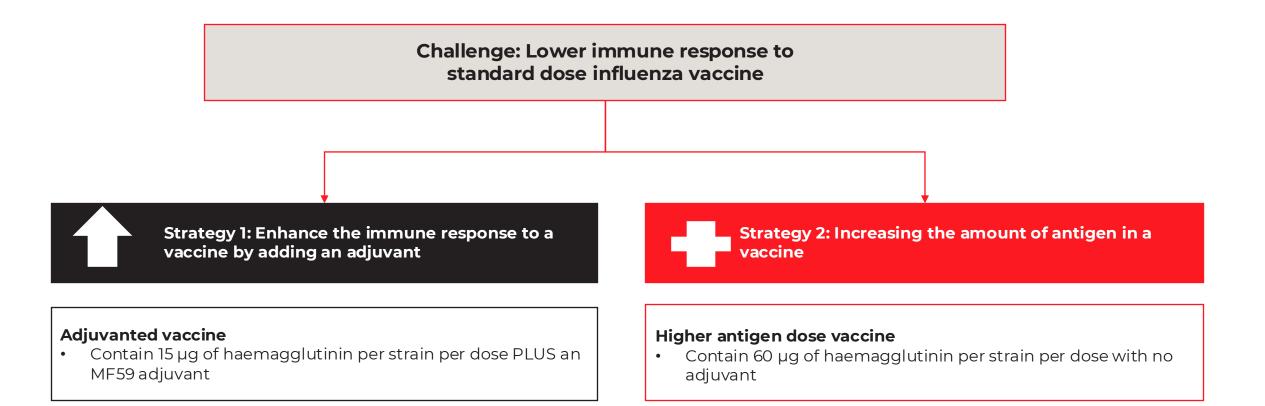
Phagocytosis / antigen-processing & presentation



Adaptive immune cell function

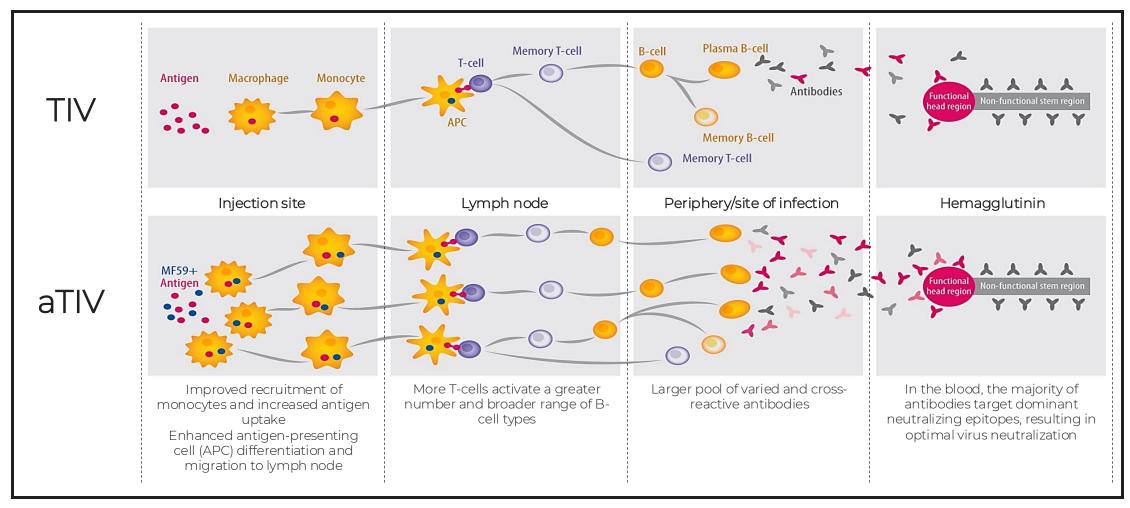
- Naïve B & T cells
- Antibody production, diversity and affinity
- Memory T cells

Inflammaging



Poor vaccination outcomes & increased susceptibility to infection^{1,2}

7


Figure adapted from Santoro A, et al. Ageing Res Rev. 2021;71:101422. [†]Cells include neutrophils, natural killer cells, macrophages and dendritic cells. **1.** Santoro A, et al. Ageing Res Rev. 2021;71:101422. **2.** Crooke SN, et al. Immun Ageing. 2019;16:25;

Adjuvanted and higher dose vaccines have been designed to boost immune response

MF59-adjuvanted vaccines are designed to improve the magnitude, persistence, and breadth of the immune response¹⁻⁷

MOA for MF59 Adjuvant (Compared to TIV)

1. Siegrist CA in Plotkin SA *et al.* Vaccines. 5th Edition. 2008. 2. O'Hagan DT. *Expert Rev Vaccines* 2007; 6:699–710. 3. Mosca F, *et al. Proc Natl Acad Sci U S A* 2008; 105:10501–10506. 4. Calabro S, *et al. Vaccine* 2011; 29:1812–1823. 5. Khurana S, *et al. Sci Transl Med* 2011; 3:85ra48. 6. O'Hagan DT. *Expert Rev Vaccines* 2011; 10:447–462. 7. Seubert A, *et al. J Immumol* 2008; 180:5402–5412.

Advantages of adjuvant and high-dose vaccines

Strengthen Improve the magnitude of antibody response¹⁻³

Broaden

Adjuvanted vaccines induce higher antibody response against heterologous strains, especially A/H3N2⁴

Lengthen

Provides protection throughout the season¹⁻³

1. Tregoning JS *et al.* Ajuvanted influenza vaccines *Hum Vaccine* Immunother 2018;14(3):550-564. 2. Australian Technical Advisory Group on Immunisation (ATAGI). Australian Immunisation Handbook, Australian Government Department of Health and Aged Care, Canberra, 2022, immunisationhandbook. health.gov.a u.[Accessed August 2024]. 3. Centres for Disease Control and Prevention. Fluzone High-Dose Seasonal Influenza Vaccine. Available at: https://www.cdc.gov/flu/prevent/qa_fluzone.htm [Accessed August 2024]. 4. You hanna J *et al. Influenza and other respiratory viruses* 2024; 18:e:13286.

RCT study of high-dose vs standard-dose vaccines

Variable	Laboratory-Confirmed Influenza		
	IIV3-HD (N=15,990)	IIV3-SD (N=15,993)	Relative Efficacy (95% CI)
	no. (%)		%
Protocol-defined influenza-like illness	228 (1.4)	301 (1.9)	24.2 (9.7 to 36.5)‡
Influenza A	190 (1.2)	250 (1.6)	24.0 (7.8 to 37.4)
A/H1N1	8 (<0.1)	9 (0.1)	11.1 (-159.6 to 70.2)
A/H3N2	171 (1.1)	223 (1.4)	23.3 (6.0 to 37.5)
Influenza B	38 (0.2)	51 (0.3)	25.5 (–15.7 to 52.4)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Efficacy of High-Dose versus Standard-Dose Influenza Vaccine in Older Adults

Carlos A. DiazGranados, M.D., Andrew J. Dunning, Ph.D., Murray Kimmel, D.O., Daniel Kirby, B.Sc., John Treanor, M.D., Avi Collins, B.Sc.N., Richard Pollak, D.P.M., Janet Christoff, R.N., John Earl, M.D.,
Victoria Landolfi, M.Sc., M.B.A., Earl Martin, D.O., Sanjay Gurunathan, M.D.,
Richard Nathan, D.O., David P. Greenberg, M.D., Nadia G. Tornieporth, M.D., Michael D. Decker, M.D., M.P.H., and H. Keipp Talbot, M.D., M.P.H.

N=~30,000

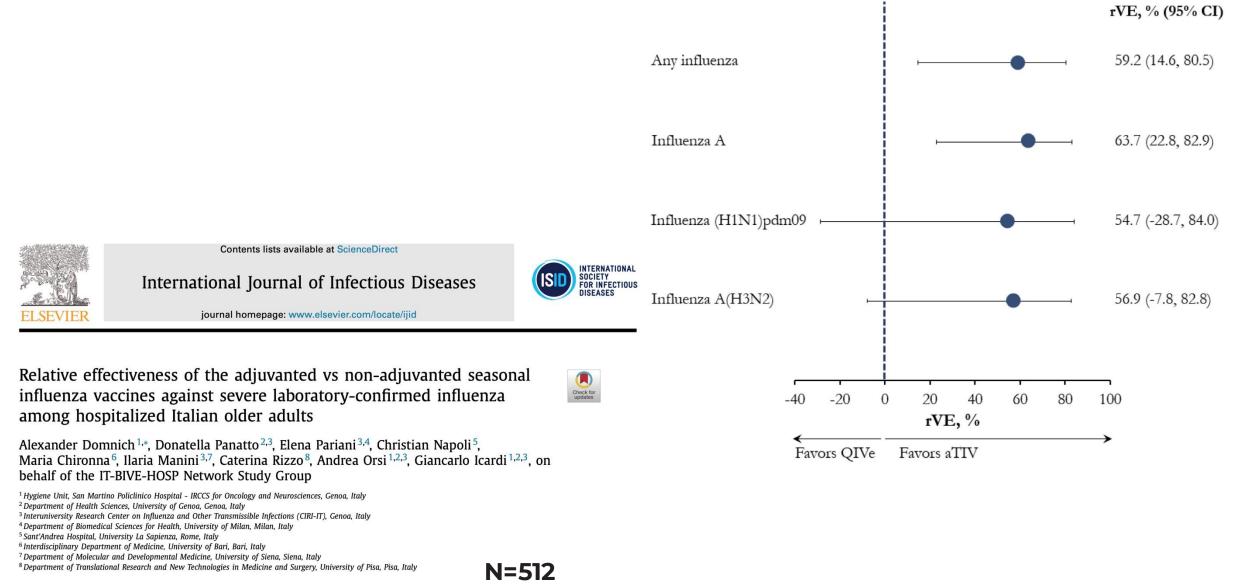
Retrospective cohort study of high-dose vs standard-dose vaccines

Table 2

Relative vaccine effectiveness and sensitivity analysis against influenza hospitalizations

Vaccine group	Hospitalization rate per 100 000 person years (95% CI)	IRR HD-QIV vs. SD-QIV (95% CI)	rVE (95% CI)	p value			
HD-QIV SD-QIV	69.47 (59.64–80.92) 90.53 (84.68–96.78)	0.77 [0.64–0.92]	23.29 [8.38–35.77]	0.003			
Sensitivity analysis inc	luding influenza hospitalizations with a COVID-19 code						
HD-QIV SD-QIV	70.31 (60.42–81.83) 92.00 (86.10–98.29)	0.76 [0.64–0.91]	23.61 [8.88–35.96]	0.003			
Sensitivity analysis during the peak of the season							
HD-QIV SD-QIV	52.63 (44.17–62.71) 72.36 (67.15–77.97)	0.73 [0.59–0.89]	27.38 [11.05-40.70]	0.002			

HD, high-dose; QIV, quadrivalent influenza vaccine; rVE, relative vaccine effectiveness; SD, standard dose.


Original article

The relative effectiveness of a high-dose quadrivalent influenza vaccine versus standard-dose quadrivalent influenza vaccines in older adults in France: a retrospective cohort study during the 2021–2022 influenza season

Hélène Bricout ^{1, *}, Marie-Cécile Levant ¹, Nada Assi ², Pascal Crépey ³, Alexandre Descamps ⁴, Karine Mari ⁵, Jacques Gaillat ⁶, Gaétan Gavazzi ^{7, 8}, Benjamin Grenier ², Odile Launay ⁴, Anne Mosnier ⁹, Fanny Raguideau ², Laurence Watier ¹⁰, Rebecca C. Harris ¹¹, Ayman Chit ^{1, 12}

N=~2,000,000

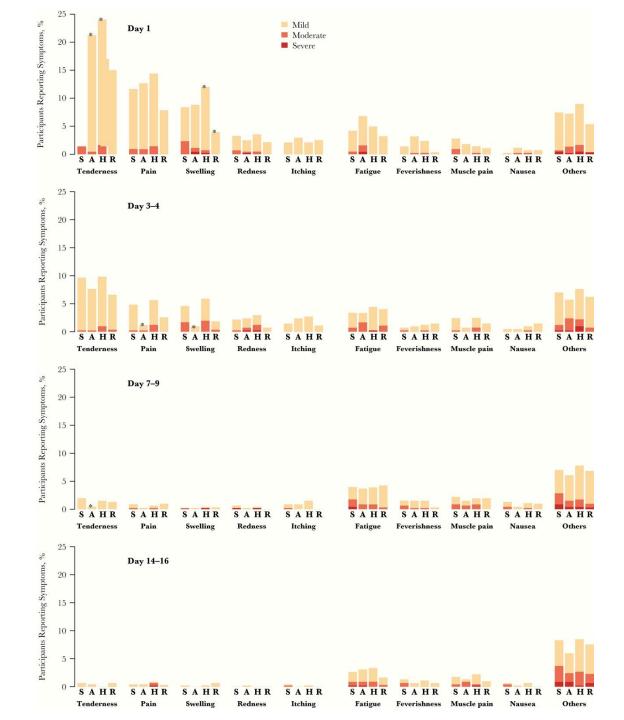
Test negative case control study of adjuvanted vs standard-dose vaccines

Systematic review of VE in older adults

 Received: 10 June 2024
 Accepted: 3 July 2024

 DOI: 10.1111/jgs.19176

REVIEW ARTICLE


Journal of the American Geriatrics Society

Protection against influenza hospitalizations from enhanced influenza vaccines among older adults: A systematic review and network meta-analysis

J. M. Ferdinands PhD, MSc¹ | L. H. Blanton MPH¹ | E. Alyanak MPH¹ | J. R. Chung MPH¹ | L. Trujillo MPH¹ | J. Taliano MA, MLS² | R. L. Morgan PhD, MPH^{3,4} | A. M. Fry MD, MPH¹ | L. A. Grohskopf MD, MPH¹

RC	Т				
(A)	Vaccine	Comparator	Estimate	1	Relative VE (95% CI)
	HD	ADJ	mean		6.3 (-108.7 to 58.0)
			prediction interval		(-772.7 to 89.9)
	ADJ	SD	mean	<u>⊢</u> <u>+</u> ● − +	20.0 (-54.2 to 58.5)
			prediction interval-	i ((-485.9 to 89.1)
	HD	SD	mean		25.1 (-18.6 to 52.7)
			prediction interval		(-312.0 to 86.4)
			-150.0	-100.0 -50.0 0.0 50.0 10	0.0
RW					
(B)	Vaccine	Comparator	Estimate	1	Relative VE (95% CI
	ADJ	SD	mean	H H	10.3 (5.5 to 14.7)
			prediction interval	<u>,</u>	(-2.2 to 21.2)
	HD	SD	mean		10.2 (7.8 to 12.6)
			prediction interval	÷	(-1.4 to 20.6)
	RIV	SD	mean	·	18.5 (7.9 to 27.9)
			prediction interval	¦	(3.2 to 31.5)
	RIV	ADJ	mean	<u>+</u> <u>+</u> • • • •	9.2 (-2.9 to 19.9)
			prediction interval	▶ <u></u>	(-8.1 to 23.8)
	RIV	HD	mean	H-+	9.2 (-2.6 to 19.7)
			prediction interval		(-7.9 to 23.6)
	ADJ	HD	mean	H H H	0.0 (-5.3 to 5.0)
			prediction interval		(-13.9 to 12.2)
	SD	No vaccine	mean	¦ ⊷••	35.8 (27.8 to 43.0)
			prediction interval	¦	(24.0 to 45.8)
			-50.0	-25.0 0.0 25.0 50.0	

Reactogenicity of high-dose, adjuvanted, and standard-dose vaccines

The Journal of Infectious Diseases

MAJOR ARTICLE

Comparative Reactogenicity of Enhanced Influenza Vaccines in Older Adults

Benjamin J. Cowling,¹ Mark G. Thompson,² Tiffany W. Y. Ng,¹ Vicky J. Fang,¹ Ranawaka A. P. M. Perera,¹ Nancy H. L. Leung,¹ Yuyun Chen,¹ Hau Chi So,¹ Dennis K. M. Ip,¹ and A. Danielle Iuliano²

¹World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China; ²Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Benefits of vaccinations

Flu Burden Prevented from Vaccination 2022-2023 Flu Season

WHAT TO KNOW

This web page provides estimates on the burden of influenza (flu) and the effects of annual flu vaccination in the United States for the 2022–2023 season.

CDC estimates that during the 2022-2023 season, flu vaccination prevented **6.0 million** flurelated illnesses, **2.9 million** medical visits, **65,000** hospitalizations, and **3,700** deaths.

https://www.cdc.gov/flu-burden/php/data-vis-vac/2022-2023-prevented.html